当前位置:笔速阁>科幻灵异>科研从博士生开始> 第二章 水平快赶上我了!
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第二章 水平快赶上我了!(1 / 6)

“有足够多的科研币,确实什么研究都能完成,问题是……”

“科研币,很难赚啊!”

‘科研币’对应的功能中,有一栏很明确的介绍--

【当前每天增长1点,完成前沿性成果可获取一定数量的科研币。】

【科研币:1。】

科研币,每天会发放一个做‘低保’,想拥有再多的科研币,就需要完成前沿性研究。

张硕了解个大概以后,就撑着额头重新坐起来,看向桌上的一大堆计算内容。

这些是根据实验检测数据列出来的,需要进行求解计算才能进行下一步的录入分析。

计算内容有难有易。

其中比较简单的,做个转换就能得到结果,有的甚至只是個二元一次方程。

难度高的则是微分方程、偏微分方程,还有带偏微分的方程组,要计算出结果就要以数值法去验算,找出适合的近似解或近似解区间。

张硕博士读的理论物理方向,有不少理论物理领域的成果,他的数学水平不能说数一数二,也绝对属于金字塔顶端的那一批人。

偏微分方程求解不是他的研究方向,但偏微分方程求解的运用场景太多了,只要是理学、理科专业的研究,就必定会有所涉猎。

他不急不慢的完成几个计算,随后就碰到个不容易求解的复杂方程组。

“这个方程组,还是要研究一下……”他扫一眼知道要用数值法最容易。

数值法,就是预估数值或数值区间代入方程中去验算。

直白来说,就是‘猜结果’。

面对一个无法求解的复杂方程,猜结果或结果区间,然后把结果确定在一个范围内。

这就是数值法。

大部分偏微分方程都需要用数值法来求出解的区间,运用到工业或实验研究上,也就是得出‘需求的大致的数据范围’。

上一章 目录 +书签 下一页