一个周的时间,过去的很快。
而林晓的房间中,他仍然在进行着他的工作。
根据那天和彼得·舒尔茨的交流,林晓的思路也得到了许多不同角度的看法。
这就像是写作,将一个题目拿到手,不同的人写出来的内容,都会是大相径庭的,不管是入手的角度,还是文章想要表现出来的思想,都会十分的不同。
数学题同样也是这样。
哪怕是那种应试教育下的题目,都有可能出现许多不同的解法,就更不用说霍奇猜想这种世界级别的问题。
所以,彼得·舒尔茨的不同看法,也为林晓拓宽了思路。
却也让他收获良多。
直到现在。
【设(x,a)是空间偶,g是任意交换群,记c(x,a)表示(x,a)的奇异链复形,并由微分流形m的闭p形式组成的完备空间对恰当p形式组成的子变体空间,为motive动机上同调群。】
【hdr(m)≌r^n……】
看着草稿纸上,最终给出的关于动机上同调的定义,林晓的脸上,也露出了笑容。
动机上同调,是搞出积分霍奇猜想的关键,而现在,他终于搞定了。
当然,他搞出来的这个,并不是动机理论所追求的那种万有上同调,万有上同调是对所有上同调集合的一种封装,而他现在的动机上同调,只是和motive动机理论相关。
不过,其已经有了动机理论的雏形——因为这个动机上同调,沟通了奇异上同调、德拉姆上同调等多种上同调理论,只不过暂时也仅限于这几种而已,还不算真正地万有,或者说万能上同调。
至于真正的动机理论,林晓隐隐觉得,或许还需要更多的拓展。
“这么说来的话,我暂时应该将其称之为林氏动机上同调?”
微微一笑,林晓便拿起笔,在动机上同调的名字
本网站为网友提供小说上传储存空间平台,为网友提供在线阅读交流、txt下载,平台上的所有文学作品均来源于网友的上传
用户上传的文学作品均由网站程序自动分割展现,无人工干预,本站自身不编辑或修改网友上传的内容(请上传有合法版权的作品)
如发现本站有侵犯权利人版权内容的,请向本站投诉,一经核实,本站将立即删除相关作品并对上传人ID账号作封号处理